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Abstract. In this paper we derive the first member of a hierarchy of integro-differential 
equations relating the density functions of a polymer with excluded volume. This equation 
is derived by a route completely analogous to the Born-Green-Yvon treatment of liquids. 
In order to solve this hierarchy of equations it is necessary to introduce another relationship 
between successive density functions. Such a relationship is known as a closure approxima- 
tion. For particular closure approximations and for particular potential functions we 
point out the relationship of the resulting equations to those derived by self-consistent fieM 
methods. For a Markov closure approximation and the hard-point potential, the equation is 
solved numerically on several lattices. 

1. Introduction 

In recent years there has been renewed interest in the statistical mechanics of polymers 
with excluded volume. Indeed, since the self-consistent field approach of Edwards (1965, 
1966) a large number of papers have appeared which are concerned with self-consistent 
field arid related equations (Reiss 1967, Yamakawa 1968, Whittington 1970, Freed and 
Gillis 1971, Freed 1971, Yamakawa 1971, Whittington and Harris 1972). A parallel 
approach, that of deriving equations analogous to  the integral equations which have 
proved so successful in the statistical mechanics of liquids, has received less attention, 
although Naghizadeh (1967) has derived a hierarchy analogous to the Kirkwood 
equations. The idea of this method is to consider a polymer in which one monomer is 
only partially coupled to  the remainder and to  examine the effect of varying the extent of 
this coupling. We wish to derive here a hierarchy of equations, not by varying the 
value of a coupling parameter, but by varying the position of one monomer. This is 
directly analogous to the approach adopted by Born and Green (1946) in their work 
on liquids. 

2. Derivation of the equations 

Consider a polymer of (n+ 1) monomers, i = 0, 1,2,. . . n at temperature 17: A point 
in the configuration space can be represented by the sequence of position vectors 
{ r o ,  r l , .  . . r , }  where r i  is the position of monomer i and r o  = 0. Associated with each 
point in configuration space is an energy E ( r o , .  . . r,) which we write as 

E ( r o , .  . . rn )  = R ( r i - r i -  1)+ 1 1 U ( r i - r j )  
i = l  i < j  
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where the first term is a potential which ensures that the polymer is connected and the 
second is the excluded-volume potential. Let p(r,,, n) dr, be the probability that the 
monomer n is in dr, at r, and let p2(ri, i ;  rj,j) dri drj be the probability that monomer i is 
in dr, at r, and monomer j is in drj at rj. Then 

p(r,, n) = f . . . f exp( - E(r,, . . . r,)/kT) dr, . . . dr,- l/Z 

p2(rj, i ; r, ,n) = f . . . f exp( -E(r,, r l  , . . . r,)/kT) dr, . . . dri- dri+ . . . dr,- l /Z (3) 

where 

Z = f . . . f e-E’kTdro.. . dr,. (4) 

Differentiating (2) with respect to r, we obtain 

= f . . . f( V,R(r,-r,-,)+ VnU(rn-ri) exp(-E/kT)dr,. . . drn-l 
i < n - 1  ( 5 )  

from which it follows that : 

p2(rir i ;  r,, n)V,,U(r,-r,) dr,. 
+iZ1 S 

This equation is exact and forms the first member of a hierarchy relating the density 
functions of various orders. The next member can be obtained by differentiating p 2  in 
equation (3), and so on. We do not pursue the details here. 

3. Closure approximations 

The importance of equation (6) is that it can be combined with a second relationship 
between p z  and p which closes the hierarchy and allows (6) to be solved for p. The prob- 
lem is to determine a useful closure approximation. Two such approximations which 
have appeared in the polymer literature are the independence approximation 

and the Markov approximation 
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If we introduce the independence approximation in equation (5) we obtain 

- J p(ri, i )  U(r, - ri) dri 
kT ) i < n -  1 kT 

-J p(r, - 1 , n - l)R(r, - r, - 1) dr, - 1 p(rn, n) = A exp 

(9) 
With boundary condition 

we easily obtain 

p(r, 1) = A, exp - (-:y 
and 

which are correct. The approximation breaks down at the third step. I t  is also important 
to note that equation (9) does not correctly describe an unrestricted random walk in the 
special case U = 0. 

Introducing the Markov approximation into equation (5) we obtain 

- kTVnP(rn 7 n) 

= I p(r,- 1, n - I)&, - r,- 1 ,  1)V,,W,, - r,- 1) drn- 1 

dr i ,  i)p(r, - ri, n - i)VnU(rn - ri) dri. 
i = O  

With boundary condition (9) we obtain equation (10) and from (10) and (12) it is easy to 
show that 

VnP(r,,, n) = n- l)VAr,-r,,- 1) dr,- 

- (&) Ari, i)p(rn-ri, n -i)VnU(rn-ri) dr,. 

Strictly, a normalization constant should appear in this equation. 
We expect the Markov equation to be exact for the unrestricted random walk and 

this is easily seen by putting U = 0 in (13). We can obtain further results for the excluded- 
volume problem if we adopt a suitable choice for U. A convenient form is the potential 

U(r) = kTPG(r) (15) 

where p is a binary cluster integral and represents the volume excluded by a monomer. 
If we define the Fourier transform of p as 

flk, n) = p(r, n) exp( - ik . r) dr s 
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then inserting (15) into (14) and transforming we obtain 

ikflk, n) = ik@(k, n - l)p(k, 1 )  - p p(k, i){ ikp(0, n - i) - Vp(0, n - i)}. (17) 

Since the singlet density functions are symmetric about the origin the gradient is zero 
at the origin so that 

(18) 

i 

f lk ,  n) = p(k, n - l)p(k, 1) - p 1 flk, i)p(O, n - i) 
i 

which, after inverse Fourier transforming, becomes 

p(r, n) = p(r - s, n - l)p(s, 1) ds - 1 p(r, i)p(O, n - i). (19) 
i 

Equation (19) is similar to equation (10) of Whittington (1970) and equation (18) bears 
a strong resemblance to equations (14) and (15) of Wall and Whittington (1969). flk,  1) 
plays the r61e of the lattice propagator and $(k, i)p(O, n - i )  approximates the correction 
term due to tadpoles with tail of length i and head of size (n- i). It overestimates this 
correction term since it uses an initial ring closure probability and hence ignores the 
interaction between the head and tail of the tadpole. Hence, one expects this equation 
to overestimate the excluded volume effect. 

It is also possible to  use a Markov approximation in the connectivity term (which 
would be exact for a random walk) and an independence approximation in the excluded- 
volume term. From (6) and (15) we obtain 

(20) 
p2(s, n - 1 ; r,  n)VR(r -s) ds 

- B 1 Vp2(r, n ; r, i). s kT i 
Vp(r, n) = - 

Inserting the Markov closure into the connectivity term and integrating gives 

p(r, n) = p(r -s, l)p(s, n - 1)  ds- c p2(r, n; r,  9. s i 

Now inserting the Markov closure gives (19) and inserting the independence closure gives 

\ 

where the normalization An is included explicitly. 
Putting 

so as to fix all bond lengths, Taylor expanding, and dropping higher terms gives 

a a2 
i 

which is Edwards’ self-consistent field equation. 
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In a similar way, we can expand around rand n in equation (21) without introducing 
a closure approximation and the leading terms then give 

a p  a2 
a- = -V2p-/3Cp2(r,n;r,i) 

an  6 i 

which is the self-consistent field equation derived by Yamakawa (1971) (cf Reiss 1967). 

4. Numerical results 

The lattice analogue of equation (18) is 

where 
q(r, s) = C- if r and s are neighbouring lattice points 

= o  otherwise, 

C is the coordination number and A ,  is a normalization constant. Notice that this 
equation differs slightly from equation (10) of Whittington (1970). 

Numerical solution of this equation is straightforward and has been carried out for 
several lattices. The mean-square lengths for the square lattice are given in table 1, 

Table 1. Mean-square lengths for the square lattice using the Markov closure approximation 
in (a) the BGY equations derived here and (b) the equations derived in Whittington (1970). 
Exact values derived by Domb are given for comparison 

3 3.667 4.556 4.556 
5 7.066 9.858 9.56 

10 18.776 28.875 26.24 
15 34.545 54.222 47.22 
20 53.756 84.997 - 
50 222.784 - - 

together with some other values for comparison. Assuming that 

( r : )  ‘v Any 

we have estimated y using linear extrapolants. These results are shown in table 2 for 
several lattices. 

It is interesting that, for each lattice, for short walks the mean-square lengths are 
rather less than the exact values. In spite of this the estimated exponents are, in each 
case, greater than the values estimated from exact enumeration data. This suggests 
that the present method underestimates A in equation (25) and detailed calculations 
bear out this conclusion. For instance, we estimate A = 0.51 for the square lattice 
whereas Domb’s estimate is 0.755 (Domb 1963). 
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Table 2. Values of the mean-square length exponent for various lattices using Markov 
approximations in (a)  the BGY equations derived here and (b) the equations derived in 
Whittington (1970) 

Y. Y b  

Square 1.569 1.566 
Triangular 1.574 1.567 
Simple cubic 1.258 1.284 
Face centred cubic 1.246 - 
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